2ntブログ

一言居士の独言

博論第3章参照

博論第3章参照


(原文)
3.6 References

1. Berrier, A. L.; Yamada, K. M. Cell-matrix adhesion. J. Cell. Physiol.213:565□573: 2007.
2. Braam, S. R.; Zeinstra, L.i Litjens, S.; Ward-van Oostwaard, D.; van den Brink, S.; van Laake, L.; Lebrin, F.; Kats, P.; Hochstenbach, R.; Passier, R.; Sonnenberg, A.; Mummery, C. L. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbetaS integrin. Stem Cells 26-2257□2265: 2008.
3. Brakebusch, C.; Fassler, R. The integrin-actin connection, an eternal love affair. EMBO J. 22:2324□2333: 2003.
4. Busser, B. W.; Bulyk, M. L.; Michelson A. M. Toward a systems-level understanding of developmental regulatory networks. Curr. Opin. Genet. Dev. 18:521□529: 2008.
5. Casella, J. F.; Flanagan, M. D.; Lin, S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293-302□305: 1981.
6. Ceradini, D. J.; Kulkarni, A. R.l Callaghan, M. J.; Tepper, O. M.I Bastidas, N.;Kleinman, M. E.; Capla, J. M.; Galiano, R. D.; Levine, J. P.I Gurtner, G. C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10-858□864: 2004.
7. Chelberg, M. K.I Tsilibary, E. C.l Hauser, A. R.l McCarthy, J. B. Type IV coUagen-mediated melanoma cell adhesion and migration: involvement of multiple, distinct domains of the collagen molecule. Cancer Res. 49:4796□4802; 1989.
8. Chiou, S. H.; Kao, C. L.; Peng, C. H.; Chen, S. J.; Tarng, Y. W.; Ku, H. H.; Chen, Y. C.; Shyr, Y. M.; Liu, R. S.; Hsu, C. J.; Yang, D. M.; Hsul W. M.; Kuo, C. D.; Lee, C. H. A novel in vitro retinal differentiation model by co'culturing adult human bone marrow stem cells with retinal pigmented epithelium cells. Biochem. Biophys. Res. Commun. 326:578□585; 2005.
9. Choi, J. S.; Yang, H. J.; Kim, B. S.; Kim, J. D.; Kim, J. Y.; Yoo, B.; Park, K.; Lee, H. Y.; Cho, Y. W. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J. Control. Release 139:2□7; 2009.
10. Cooper, H. M.; Tamura, R. N.; Quaranta, V. The major laminin receptor of mouse embryonic stem cells is a novel isoform of the alpha 6 beta 1 integrin. J. CellBiol. 115:843□850; 1991.
11. Czirok, A.; Zamir, E. A.; Filla, M. B.; Little, C. D.; Rongisli, B. J. Extracellular matrix macroassembly dynamics in early vertebrate embryos. Curr. Top. Dev. Biol. 73:237□258; 2006.
12. Decline, F.; Rousselle, P. Keratinocyte migration requires alpha2beta1 integrin-mediated interaction with the laminin 5 gamma2 chain. J. Cell Sci. 114:811□823; 2001.
13. Desban, N.; Lissitzky, J. C.; Rousselle, P.; Duband, J. L. alpha1beta1-integrin engagement to distinct laminin-1 domains orchestrates spreading, migration and survival of neural crest cells through independent signaling pathways. J. Cell Sci. 119:3206□3218; 2006.
14. Goto, M.; Sumiyoshi, H.; Sakai, T.J Fassler, R.! Ohashi, S.j Adachi, E.. Yoshioka, H.; Fujiwara, S. Ehmination ofepiplakin by gene targeting results in acceleration ofkeratinocyte migration in mice. Mol. Cell. Biol. 26:548□558; 2006
15. Hayashi, Y.; Furue, M. K; Okamoto, T.: Ohnuma, K.; Myoishi, Y.: Fukuhara, Y.: Abe, T.; Sato, J. D.; Hata, R.; Asasliima, M. Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 25-3005□3015; 2007.
16. Hehlgans, S.; Haase, M.; Cordes, N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim. Biophys. Acta 1775:163□180; 2007
17. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110:673□687; 2002.
18. Khoshnoodi, J.; Pedchenko, V.; Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71:357□370; 2008.
19. Kim, Y. S.; Park, H. J.; Hong, M. H.; Kang, P. M.; Morgan, J. P.; Jeong, M. H.; Cho, J. G.: Park, J. C.; Ahn, Y. TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Front. Biosci. 14:2845□2856: 2009.
20. Kjtaori, T.; Ito, H.; Schwarz, E. M.: Tsutsumi, R.; Yoshitomi, H.; Oishi, S.;Nakano, M.; Fujii, N.; Nagasawa, T.: Nakamura, T. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60:813□823; 2009.
21. Kofidis, T.; de Bruin, J. L.; Yamane, T.: Balsam, L. B.; Lebl, D. R.; Swijnenburg, R. J. :Tanaka, M.; Weissman, I. L.; Robbins, R. C. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22;1239□1245; 2004.
22. Kofidis, T.: de Bruin, J. L.: Yamane, T.; Tanaka, M.; Lebl, D. R.; Swijnenburg, R. J.; Weissman, L L.; Robbins, R. C. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 111:2486□2493: 2005.
23. Laflamme, M. A.: Chen, K. Y.; Naumova, A. V.; Muskheli, V.; Fugate, J. A.; Dupras, S. K.; Reinecke, H.; Xu, C.; Hassanipour, M.; Pohce, S.; O'Sullivan, C.; Collins, L.; Chen, Y.; Minami, E.; Gill, E. A.; Ueno, S.; Yuan, C.; Gold, J.; Murry, C. E. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25:1015□1024: 2007.
24. Lee, J. M.; Dedhar, S.; Kalluri, R.I Thompson, E. W. The epithelial-mesenchymal transition- new insights in signaling, development, and disease. J. Cell Biol. 172:973□981; 2006.
25. Lee, K. H.; Chuang, C. K; Wang, H. W.: Stone, L.; Chen, C. H.; Tu, C. F. An alternative simple method for mass production of chimeric embryos by coculturing deヌded embryos and embryonic stem cells in Eppendorf vials. Theriogenology 67;228□237; 2007.
26. Leitinger, B.; Hohenester, E. Mammalian collagen receptors. Matrix Biol. 26:146-155; 2007.
27. Li, K.; Chuen, C. K.; Lee, S. M.; Law, P.; Fok, T. F.; Ng, P. C.; Li, C. K; Wong, D.: Merzouk, A.; Salad, H.; Gu, G. J.; Yuen, P. M. Small peptide アnalogue of SDF-lalpha supports survival of cord blood CD34+ cells in synergy with other cytokines and enhances their ex vivo expansion and engraftment into nonobese diabetic/severe combined immunodeficient mice. Stem Cells 24:55□64: 2006.
28. Li, S.; Tanaka, H.; Wang, H. H.; Yoshiyama, S.; Kumagai, H.; Nakamura, A.; Brown, D. L.; Thatcher, S. E..;Wright, G. L.; Kohama, K. Intracellular signal transduction for migration and actin remodeling in vascular smooth muscle cells after sphingosylphosphorylcholine stimulation. Am. J. Physiol. Heart Circ. Physiol. 291:H1262□1272; 2006.
29. Lock, J. G.; Wehrle-Haller, B.i Stromblad, S. Cell-matrix adhesion complexes: master control machinery of cell migration. Semin. Cancer Biol. 18:65□76; 2008
30. Matsuda, R.: Yoshikawa, M.; Kimura, H.; Ouji, Y.;Nakase, H.; Nishimura, F.; Nonaka, J.; Toriumi, H.; Yamada, S.; Nishiofuku, M.; Moriya, K.; Ishizaka, S.; Nakamura, M.; Sakaki, T. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transplant. 18:39□54; 2009.
31. Mooney, D. J.; Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2:205□213; 2008.
32. Muny, C. E.; Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661□680; 2008
33. Nishikawa, S.; Jakt, L. M.; Era, T. Embryonic stem-cell culture as a tool for developmental cell biology. Nat. Rev. Mol. Cell Biol. 8-502□507; 2007.
34. Pan, G.; Thomson, J. A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 17:42□49: 2007.
35. Parameswaran, K.; Radford, K.; Zuo, J.; Janssen, L. J.; O'Byrne, P. M.; Cox, P. G. Extracellular matrix regulates human airway smooth muscle cell migration. Eur. Respir. J. 24;545□55l; 2004.
36. Passier, R.; van Laake, L. W.; Mummery, C. L. Stem-cell-based therapy and lessons from the heart. Nature 453:322□329; 2008.
37. Perris, R.; Syfrig, J.; Paulsson, M.; Bronner-Fraser, M. Molecular mechanisms of neural crest cell attachment and migration on types 1 and IV collagen. J. Cell Sci. 106(Pt4):1357□1368; 1993.
38. Poschl, E.; Schlotzer-Schrehardt, U.; Brachvogel, B.; Saito, K.; Ninomiya, Y.: Mayer, U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development.


(和訳)
3.6参照 <訳注:11jigen氏は本文中にリファランスナンバーが打たれていないと指摘しているが、それが編集中の草稿であることの何よりの証拠。>

1. Berrier, A. L.; Yamada, K. M. 細胞 - マトリックス接着。 Cell. Physiol.213:565□573: 2007.
2. Braam, S. R.; Zeinstra, L.i Litjens, S.; Ward-van Oostwaard, D.; van den Brink, S.; van Laake, L.; Lebrin, F.; Kats, P.; Hochstenbach, R.; Passier, R.; Sonnenberg, A.; Mummery, C. L. 組換えビトロネクチンは、機能的に定義された基質であり、アルファベータSインテグリンを介したヒト胚性幹細胞自己再生を支持する。 Stem Cells 26-2257□2265: 2008.
3. Brakebusch, C.; Fassler, R. インテグリンアクチンとのつながり、永遠の恋愛。EMBO J. 22:2324□2333: 2003.
4. Busser, B. W.; Bulyk, M. L.; Michelson A. M. 発達規制ネットワークのシステムレベルの理解に向けて。 Curr. Opin. Genet. Dev. 18:521□529: 2008.
5. Casella, J. F.; Flanagan, M. D.; Lin, S. サイトカラシンDはアクチン重合を阻害し、血小板形状変化の間に形成されるアクチンフィラメントの解重合を誘導する。 Nature 293-302□305: 1981.
6. Ceradini, D. J.l Kulkarni, A. R.l Callaghan, M. J.I Tepper, O. M.I Bastidas, N.;Kleinman, M. E.; Capla, J. M.I Galiano, R. D.I Levine, J. P.I Gurtner, G. C. 前駆細胞の輸送は、SDF-1のHIF-1誘導を介して、低酸素勾配によって調節される。 Nat. Med. 10-858□864: 2004.
7. Chelberg, M. K.I Tsilibary, E. C.l Hauser, A. R.l McCarthy, J. B. IV型コラーゲン媒介黒色腫細胞の接着および遊走:コラーゲン分子の複数別個領域の関与。 Cancer Res. 49:4796□4802; 1989.
8. Chiou, S. H.; Kao, C. L.; Peng, C. H.; Chen, S. J.; Tarng, Y. W.; Ku, H. H.; Chen, Y. C.; Shyr, Y. M.; Liu, R. S.; Hsu, C. J.; Yang, D. M.; Hsul W. M.; Kuo, C. D.; Lee, C. H. 成人ヒト骨髄幹細胞を網膜色素上皮細胞と共培養することによる新規試験管内網膜分化モデル Biochem. Biophys. Res. Commun. 326:578□585; 2005.
9. Choi, J. S.; Yang, H. J.; Kim, B. S.; Kim, J. D.; Kim, J. Y.; Yoo, B.; Park, K.; Lee, H. Y.; Cho, Y. W. 注射による細胞送達および脂肪組織工学のためのヒト細胞外マトリックス(ECM)粉末。 J. Control. Release 139:2□7; 2009.
10. Cooper, H. M.; Tamura, R. N.; Quaranta, V. マウス胚性幹細胞の主要なラミニン受容体は、α6β1インテグリンの新規アイソフォームである。 J. CellBiol. 115:843□850; 1991.
11. Czirok, A.; Zamir, E. A.; Filla, M. B.; Little, C. D.; Rongisli, B. J. 初期の脊椎動物の胚における細胞外マトリックスのマクロダイナミクス Curr. Top. Dev. Biol. 73:237□258; 2006.
12. Decline, F.; Rousselle, P. ケラチノサイトの移動は、ラミニン5γ2鎖とのα2β1インテグリン媒介相互作用を必要とする。 J. Cell Sci. 114:811□823; 2001.
13. Desban, N.; Lissitzky, J. C.; Rousselle, P.; Duband, J. L. 異なるラミニン-1ドメインへのα1β1インテグリンの関与は、独立したシグナル伝達経路を介した神経堤細胞の広がり、遊走および生存を調整する。 J. Cell Sci. 119:3206□3218; 2006.
14. Goto, M.; Sumiyoshi, H.; Sakai, T.J Fassler, R.! Ohashi, S.j Adachi, E.. Yoshioka, H.; Fujiwara, S. 遺伝子ターゲティングによるエプラパキンの絶滅により、マウスにおけるケラチノサイトの移動が加速される。 Mol. Cell. Biol. 26:548□558; 2006
15. Hayashi, Y.; Furue, M. K; Okamoto, T.: Ohnuma, K.; Myoishi, Y.: Fukuhara, Y.: Abe, T.; Sato, J. D.; Hata, R.; Asasliima, M. インテグリンは、マウス胚性幹細胞の自己再生を調節する。 Stem Cells 25-3005□3015; 2007.
16. Hehlgans, S.; Haase, M.; Cordes, N. インテグリンを介したシグナル伝達:細胞生存と抗癌戦略への影響。 Biochim. Biophys. Acta 1775:163□180; 2007
17. Hynes, R. O. インテグリン:双方向のアロステリックシグナルマシン。 Cell 110:673□687; 2002.
18. Khoshnoodi, J.; Pedchenko, V.; Hudson, B. G. 哺乳動物コラーゲンIV。 Microsc. Res. Tech. 71:357□370; 2008.
19. Kim, Y. S.; Park, H. J.; Hong, M. H.; Kang, P. M.; Morgan, J. P.; Jeong, M. H.; Cho, J. G.: Park, J. C.; Ahn, Y.TNF-アルファは、間葉系幹細胞の梗塞心筋への移植を促進する。 Front. Biosci. 14:2845□2856: 2009.
20. Kjtaori, T.; Ito, H.; Schwarz, E. M.: Tsutsumi, R.; Yoshitomi, H.; Oishi, S.;Nakano, M.; Fujii, N.; Nagasawa, T.: Nakamura, T. 間質細胞由来因子1 / CXCR4シグナル伝達は、マウスモデルにおける骨格修復の間に骨折部位への間葉系幹細胞の動員にとって重要である。 Arthritis Rheum. 60:813□823; 2009.
21. Kofidis, T.; de Bruin, J. L.; Yamane, T.: Balsam, L. B.; Lebl, D. R.; Swijnenburg, R. J. :Tanaka, M.; Weissman, I. L.; Robbins, R. C. インスリン様増殖因子は、心筋再生のための胚性幹細胞移植後の生着、分化および機能改善を促進する。 Stem Cells 22;1239□1245; 2004.
22. Kofidis, T.: de Bruin, J. L.: Yamane, T.; Tanaka, M.; Lebl, D. R.; Swijnenburg, R. J.; Weissman, L L.; Robbins, R. C. 成長因子によるパラクリン経路の刺激は、虚血性心筋損傷後の心臓における胚性幹細胞の生着および宿主特異的分化を増強する。 Circulation 111:2486□2493: 2005.
23. Laflamme, M. A.: Chen, K. Y.; Naumova, A. V.; Muskheli, V.; Fugate, J. A.; Dupras, S. K.; Reinecke, H.; Xu, C.; Hassanipour, M.; Pohce, S.; O'Sullivan, C.; Collins, L.; Chen, Y.; Minami, E.; Gill, E. A.; Ueno, S.; Yuan, C.; Gold, J.; Murry, C. E. 生存促進因子におけるヒト胚性幹細胞由来の心筋細胞は、梗塞したラット心臓の機能を高める。Nat. Biotechnol. 25:1015□1024: 2007.
24. Lee, J. M.; Dedhar, S.; Kalluri, R.I Thompson, E. W. 上皮間葉移行 - シグナル伝達、発生および疾患における新しい洞察。 J. Cell Biol. 172:973□981; 2006.
25. Lee, K. H.; Chuang, C. K; Wang, H. W.: Stone, L.; Chen, C. H.; Tu, C. F. 裸胚と胚性幹細胞をエッペンドルフバイアルに共培養することにより、キメラ胚の大量生産のための簡単な代替方法。Theriogenology 67;228□237; 2007.
26. Leitinger, B.; Hohenester, E. 哺乳類のコラーゲン受容体。 26:146-155; 2007.
27. Li, K.; Chuen, C. K.; Lee, S. M.; Law, P.; Fok, T. F.; Ng, P. C.; Li, C. K; Wong, D.: Merzouk, A.; Salad, H.; Gu, G. J.; Yuen, P. M. SDF-1αの小ペプチド類似体は、他のサイトカインとの相乗作用で臍帯血CD34 陽性細胞の生存を助け、それらの体外での増殖および非肥満糖尿病/重症複合免疫不全マウスへの移植を補強する。 Stem Cells 24:55□64: 2006.
28. Li, S.; Tanaka, H.; Wang, H. H.; Yoshiyama, S.; Kumagai, H.; Nakamura, A.; Brown, D. L.; Thatcher, S. E..;Wright, G. L.; Kohama, K. スフィンゴシルホスホリルコリン刺激後の血管平滑筋細胞における遊走およびアクチン再構築のための細胞内シグナル伝達。 Am. J. Physiol. Heart Circ. Physiol. 291:H1262□1272; 2006.
29. Lock, J. G.; Wehrle-Haller, B.i Stromblad, S. 細胞 - マトリックス接着複合体:細胞移動のマスター制御機構。 Semin. Cancer Biol. 18:65□76; 2008
30. Matsuda, R.: Yoshikawa, M.; Kimura, H.; Ouji, Y.;Nakase, H.; Nishimura, F.; Nonaka, J.; Toriumi, H.; Yamada, S.; Nishiofuku, M.; Moriya, K.; Ishizaka, S.; Nakamura, M.; Sakaki, T. 脊髄損傷後のマウス胚性幹細胞および骨髄間質細胞の同時移植は、腫瘍発生を抑制する。 Cell Transplant. 18:39□54; 2009.
31. Mooney, D. J.; Vandenburgh, H. 組織修復のための細胞送達機構。Cell Stem Cell 2:205□213; 2008.
32. Muny, C. E.; Keller, G. 胚性幹細胞の臨床的に関連性の高い集団への分化:胚発生からの教訓。 Cell 132:661□680; 2008
33. Nishikawa, S.; Jakt, L. M.; Era, T. 発生細胞生物学のためのツールとしての胚性幹細胞培養。 Nat. Rev. Mol. Cell Biol. 8-502□507; 2007.
34. Pan, G.; Thomson, J. A. 胚性幹細胞多能性におけるNanogおよび転写ネットワーク。 Cell Res. 17:42□49: 2007.
35. Parameswaran, K.; Radford, K.; Zuo, J.; Janssen, L. J.; O'Byrne, P. M.; Cox, P. G. 細胞外マトリックスは、ヒト気道平滑筋細胞の移動を調節する。 Eur. Respir. J. 24;545□55l; 2004.
36. Passier, R.; van Laake, L. W.; Mummery, C. L. 幹細胞に基づく療法と心臓からの教訓。Nature 453:322□329; 2008.
37. Perris, R.; Syfrig, J.; Paulsson, M.; Bronner-Fraser, M. 1型および4型コラーゲンにおける神経堤細胞の接着および遊走の分子機構 J. Cell Sci. 106(Pt4):1357□1368; 1993.
38. Poschl, E.; Schlotzer-Schrehardt, U.; Brachvogel, B.; Saito, K.; Ninomiya, Y.: Mayer, U. コラーゲンIVは基底膜の安定性に必須であるが、初期発生時の組成開始には必ずしも必要でない。










  1. 2019/08/24(土) 22:55:48|
  2. 小保方さんの論文
  3. | コメント:0
前のページ

プロフィール

ichigenkoji

Author:ichigenkoji
したらばから引っ越しました

最新記事

最新コメント

月別アーカイブ

カテゴリ

新設・STAP事件簿 (1)
引っ越し・古代史ブログ (1)
引っ越し・釣りブログ (1)
ミトコンドリア (2)
AC129 (20)
一枚報告 (1)
一枚報告補記 (9)
STAP事件 (44)
桂報告書疑義 (6)
Ooboeさん情報 (25)
学さんブログ検討記録 (39)
小保方さんの論文 (6)
ネイチャー査読 (1)
レター論文 (5)
プロトコル (2)
kahoの日記 (1)
遠藤論文 (6)
取り下げ趣意書 (1)
丹羽検証論文 (4)
李論文(アブストのみ) (1)
李履歴書 (1)
李感想問答 (1)
非ヒトES動物 (2)
その他 (0)
廃棄 (0)
糞チャンコロ (1)

検索フォーム

RSSリンクの表示

ブロとも申請フォーム

この人とブロともになる

QRコード

QR