2ntブログ

一言居士の独言

対訳丹羽検証論文(その1)

(英文)
Investigation of the cellular reprogramming phenomenon referred to as stimulus-triggered acquisition of pluripotency (STAP)

Hitoshi Niwa1

Scientific Reports 6, Article number: 28003 (2016)
doi:10.1038/srep28003
Download Citation


多能性の刺激惹起性獲得(STAP)と呼ばれる細胞再プログラミング現象の調査

丹羽仁史

Scientific Reports 6、記事番号:28003(2016)
doi:10.1038 / srep28003
ダウンロード指定

(英文)
Reprogramming
Totipotent stem cells

Received:
6-Oct-15
Accepted:
26-Apr-16
Published online:
13-Jun-16


再プログラミング
全能性幹細胞

受付
2015/10/6
受諾
2016/4/26
オンライン公開
2016/6/13


(英文)
Abstract

In January 2014, it was reported that strong external stimuli, such as a transient low-pH stressor, was capable of inducing the reprogramming of mammalian somatic cells, resulting in the generation of pluripotent cells. This cellular reprograming event was designated ‘stimulus-triggered acquisition of pluripotency’ (STAP) by the authors of these reports. However, after multiple instances of scientific misconduct in the handling and presentation of the data were brought to light, both reports were retracted. To investigate the actual scientific significance of the purported STAP phenomenon, we sought to repeat the original experiments based on the methods presented in the retracted manuscripts and other relevant information. As a result, we have concluded that the STAP phenomenon as described in the original studies is not reproducible.


概要

2014年1月、一過性の低pH刺激などの強い外的刺激が、哺乳類の体細胞の再プログラミングを誘導し、多能性細胞の生成をもたらすことができることが報告された。 この細胞再プログラミング事象は、これらの報告書の著者によって「多能性の刺激惹起性獲得」(STAP)と定義された。 しかし、データの取り扱いと提示における科学的誤処置の複数の事例が明らかにされた後、両方の報告が取り下げられた。いわゆるSTAP現象の実際の科学的重要性を調べるために、取り下げられた論文や他の関連情報に示されている方法に基づいて元の実験の繰返しに努めた。 その結果、元の論文に記載されているようなSTAP現象には再現性が無いと結論した。


(英文)
Introduction

Cellular reprograming is a biological event in which a differentiated metazoan cell is induced to revert to a state functionally resembling that of cells at earlier developmental stages[1],[2]. Full reprograming of somatic cells results in the acquisition of the ability to give rise to an entire organism, or totipotency; this can be achieved by somatic cell nuclear transfer[3]. Pluripotency in contrast is the ability of a cell to differentiate into all somatic cell lineages. It has been shown that the artificial expression of pluripotency-associated transcription factors results in reprogramming of somatic cells to a state of pluripotency, such cells are referred to as as induced pluripotent stem (iPS) cells[4].


前書

細胞の再プログラミングは、分化した後生動物細胞が誘導されて、早期発生段階での細胞のそれに機能的に類似した状態に戻る生物学的事象である[1],[2]。 体細胞の完全な再プログラムは、全機能を復元する能力、すなわち全能性の獲得に結果する; これは体細胞核移植によって達成することができる[3]。 対して多能性は細胞がすべての体細胞系統に分化する能力である。 多能性関連転写因子の人工的発現は体細胞の多能性状態への再プログラミングをもたらすことが示されており、そのような細胞は誘導多能性幹(iPS)細胞と呼ばれている[4]。


(英文)
Mouse pluripotent stem cells share common features. Authentic pluripotent stem cells are embryonic stem (ES) cells derived from pre-implantation embryos[5],[6]. Under optimized culture conditions, these maintain self-renewal by giving rise to pluripotent daughter cells via cell division. Leukemia inhibitory factor (LIF) is a well-known factor sufficient to maintain the pluripotency of mouse pluripotent stem cells in vitro[7]. Such cells express a unique set of genes associated with pluripotency, such as a transcription factor Oct3/4[8], and contribute to embryo development when transferred into pre-implantation embryos, resulting in the formation of germline chimeras[9]. These properties are shared by iPS cells derived from somatic cells[4]. Therefore, acquisition of pluripotency by somatic cells via reprograming is typically assessed based on such criteria.


マウス多能性幹細胞は共通の特徴を共有する。 本物の多能性幹細胞は、着床前胚由来の胚性幹(ES)細胞である[5],[6]。 最適化された培養条件下で、これらは細胞分裂を介して多能性娘細胞を生じることによって自己再生を維持する。 白血病抑制因子(LIF)は、試験管内でマウス多能性幹細胞の多能性を十分に維持する周知の因子である[7]。 このような細胞は、転写因子Oct3 / 4[8]のような多分化能に関連するユニークな遺伝子セットを発現し、着床前胚に導入されたときに胚発生に寄与し、生殖系列キメラの形成をもたらす。 これらの特性は体細胞由来のiPS細胞にも共通する[4]。 したがって、再プログラムされた体細胞による多能性の獲得は、典型的には、そのような基準に基づいて評価される。



(英文)
In 2014, Obokata et al. reported that sublethal external stimuli, such as exposure to a transient low-pH stressor, reprogrammed mammalian somatic cells, resulting in the generation of pluripotent cells[1],[2]. In these reports, this cellular reprograming event was designated ‘stimulus-triggered acquisition of pluripotency’ (STAP). The reports also described how the primary pluripotent cells, STAP cells, were able to give rise to two types of pluripotent stem cells in a culture-condition-dependent manner. However, both reports were subsequently retracted due to multiple intsances<→instances> of scientific misconduct[10],[11]. To investigate the scientific significance of the STAP phenomenon, we repeated the reported experiments based on the methods presented in the retracted manuscripts and other relevant information subsequently obtained. We examined the expression of pluripotency-associated genes in cell aggregates obtained in cultures of somatic cells treated with transient low-pH, and the ability of such cell aggregates to contribute to chimeric embryos after injection into pre-implantation embryos. The results of this reevaluation indicate that the previously reported STAP phenomenon is not reproducible.


2014年、Obokata et alは一過性の低pH刺激への曝露などの亜致死的外的刺激が、哺乳類の体細胞を再プログラムし、多能性細胞の発生をもたらすことを報告した[1],[2]。これらの報告では、この細胞再プログラミング事象を「刺激惹起性多能性獲得」(STAP)と命名した。報告書はまた、如何にして一次多能性細胞であるSTAP細胞が培養条件に依存した2種類の多能性幹細胞を生じさせることができるかを記載した。しかし、両方の報告は、その後、科学的な誤処置の複数の事例のために取り下げられた[10],[11]。 STAP現象の科学的意義を調べるために、取り下げられた論文に示された方法とその後得られた関連情報に基づいた記載実験を繰り返した。我々は一時的な低pHで処理された体細胞の培養物中で得られた細胞凝集体における多能性関連遺伝子の発現および着床前胚への注入後にそのような細胞凝集体がキメラ胚に寄与する能力を調べた。この再評価の結果は、以前に報告されたSTAP現象には再現性がないことを示している。


(英文)
Results

Adenosine triphosphate (ATP)-mediated transient low-PH treatment enhances formation of characteristic cell aggregates

In the original report, transient low-pH stress induced by addition of hydrochloric acid (HCl) caused massive cell death of dissociated somatic cells around 1–2 days after treatment (Fig. 1d of Obokata et al. 2014[1]); the surviving cells formed aggregates (Fig. 1b of Obokata et al.[1]). In the present study, we examined the effect of HCl treatment on dissociated cells derived from spleen, liver and heart of 4–9-day-old mice. The amount of the diluted HCl solution used to achieve optimized low-pH condition was set at 10 µl based on the titration assay (Fig. 1a). This amount resulted in massive cell death routinely although it gave higher pH than 5.7 that was indicated in the previous manuscript (Figure S1a<→Extended Data Figure 1a> of Obokata et al.[1]), and 12 µl often resulted in complete cell death. However, although massive cell death was observed at two days after treatment, aggregate formation was rarely observed in any cell type (Fig. 1b). Occasional formation of aggregates was also observed in the culture of non-treated cells, suggesting that low-pH treatment does not enhance the formation of cell aggregates.


結果

アデノシン三リン酸(ATP)を介した一過性低PH処理は特徴的な細胞凝集物の形成を増強する

元の報告では、塩酸(HCl)の添加によって誘発された一過性低pHストレスは、処理後約1~2日で解離した体細胞の大量の細胞死を引き起こした(Obokataら、20141の図1d)。生存細胞は凝集体を形成した(Fig. 1d of Obokata et al. 2014[1]);生き残った細胞は凝集塊を形成した。本研究では、4~9日齢のマウスの脾臓、肝臓および心臓由来の解離細胞に対する塩酸処理の効果を調べた。最適化された低pH条件を達成するために使用される希塩酸溶液の量は、滴定実験に基づいて10μlに設定した (Fig. 1a)。この量は、以前の論文に示された5.7よりも高いpHを与えたが(Figure S1a<→Extended Data Figure 1a> of Obokata et al.[1])、大量の細胞死を恒常的にもたらし、12μlはしばしば完全な細胞死をもたらした。しかし、処理後2日目に大量の細胞死が観察されたが、いずれの細胞タイプにおいても凝集体形成が稀にしか観察されなかった(図1b)。非処理細胞の培養でも時折凝集体の形成が観察され、低pH処理が細胞凝集体の形成を増強しないことを示唆している。

(図注)
Figure 1: Optimization of the condition for low-pH treatment.
Figure 1
(a) Titration of HCl and ATP to achieve optimal low-pH condition of cell suspension. Indicated volumes of the diluted HCl or ATP solution was added to 500 μl of HBSS containing 7 × 10 liver cells and pH was measured. (b) Frequency of formation of cell aggregates from the cells prepared from various tissues after low-pH treatment. The numbers of the total experimental trials and the trials with formation of cell aggregates at each combination of cell types and low-pH stressors are indicated.


図1:低pH処理のための条件の最適化。
図1
(a)細胞懸濁液の最適な低pH条件を達成するためのHClおよびATPの滴定。 示された量の希釈HClまたはATP溶液を、7×10の5乗個の肝細胞を含有する500μlのHBSSに添加し、pHを測定した。 (b)低pH処理後の様々な組織から調製された細胞からの細胞凝集体の形成の頻度。 細胞型と低pHストレッサーの各組み合わせでのトータル実験試行回数と細胞凝集体の形成を伴う試行回数とが示されている。


(英文)
Next we examined the effect of adenosine triphosphate (ATP) as a transient low-pH stressor based on personal communication with the authors of the original study. The amount of the diluted ATP solution to achieve optimized low-pH (~5.7) was adjusted(Fig. 1a) and experiments were repeated several times. Massive cell death was again observed at two days after treatment (Fig. 2a); however, we found that liver cells reproducibly gave rise to cell aggregates morphologically similar to those shown in the previous report, whereas spleen and heart cells only occasionally formed similar cell aggregates (Fig. 1b). The efficiency of aggregate formation was clearly higher for ATP-treated cells than for HCl-treated or non-treated cells, especially in the case of liver cells.


次に、本研究の著者との個人的な連絡に基づいて、一過性低pH刺激としてのアデノシン三リン酸(ATP)の効果を調べた。 最適化された低pH(最大5.7まで)を達成するための希釈ATP溶液の量を調整し(Fig. 1a) 、実験を数回繰り返した。 大量細胞死が処置後2日目に再び観察された(Fig. 2a); しかし、我々は肝細胞が以前の報告に示されたものと形態学的に類似した細胞凝集塊を再現可能に生じさせたのに対し、脾臓細胞および心臓細胞は稀に類似の細胞凝集塊を形成しただけであることを見出した(Fig. 1b)。 凝集塊形成の効率は、ATP処理細胞では、特に肝細胞の場合には、HCl処理細胞または非処理細胞よりも明らかに高かった。

(図注)
Figure 2: Formation of cell aggregates from low-pH treated cells.
Figure 2

(a) Time course of the cultures of liver, heart and spleen cells treated with ATP. The cells were prepared from 5-days old of C57BL6 mice carrying CAG-GFP. Scale bar = 100 μm. (b) Cell aggregates derived from liver cells treated with ATP with the culture for 7 days. Liver cells were prepared from 4-days old of C57BL6/129 F1 mice. Scale bar = 100 μm. (c) Frequency of formation of cell aggregates from liver cells with different genetic backgrounds. B6; C57BL6, F1; C57BL6/129 or 129/C57BL6. The numbers of the total experimental trials and the trials with formation of cell aggregates at each combination of cell types and genetic backgrounds are indicated.



図2:低pH処理細胞からの細胞凝集体の形成。
図2

(a)ATPで処置した肝臓、心臓および脾臓細胞の培養の時間経過。 CAG-GFPを保有する5日齢のC57BL6マウスから細胞を調製した。 スケールバー=100μm。 (b)ATPで7日間処理した肝臓細胞に由来する細胞凝集体。 肝細胞は、4日齢のC57BL6 / 129 F1マウスから調製した。 スケールバー=100μm。 (c)異なる遺伝的背景を有する肝細胞からの細胞凝集体の形成の頻度。 B6; C57BL6、F1; C57BL6 / 129または129 / C57BL6。 細胞タイプと遺伝的背景の各組み合わせでの実験総回数と細胞凝集物の形成を伴う試行回数が示されている。









  1. 2019/05/09(木) 11:04:50|
  2. 丹羽検証論文
  3. | コメント:0
<<対訳丹羽検証論文(その2) | ホーム | Ooboeさんとパートナー氏の資料館(その22)>>

コメント

コメントの投稿


管理者にだけ表示を許可する

プロフィール

ichigenkoji

Author:ichigenkoji
したらばから引っ越しました

最新記事

最新コメント

月別アーカイブ

カテゴリ

新設・STAP事件簿 (1)
引っ越し・古代史ブログ (1)
引っ越し・釣りブログ (1)
ミトコンドリア (2)
AC129 (20)
一枚報告 (1)
一枚報告補記 (9)
STAP事件 (44)
桂報告書疑義 (6)
Ooboeさん情報 (25)
学さんブログ検討記録 (39)
小保方さんの論文 (6)
ネイチャー査読 (1)
レター論文 (5)
プロトコル (2)
kahoの日記 (1)
遠藤論文 (6)
取り下げ趣意書 (1)
丹羽検証論文 (4)
李論文(アブストのみ) (1)
李履歴書 (1)
李感想問答 (1)
非ヒトES動物 (2)
その他 (0)
廃棄 (0)
糞チャンコロ (1)

検索フォーム

RSSリンクの表示

ブロとも申請フォーム

この人とブロともになる

QRコード

QR